Commuting involutions and degenerations of isotropy representations
نویسندگان
چکیده
منابع مشابه
Isotropy of Orthogonal Involutions
An orthogonal involution on a central simple algebra becoming isotropic over any splitting field of the algebra, becomes isotropic over a finite odd degree extension of the base field (provided that the characteristic of the base field is not 2). Our aim is a proof of the following result, generalizing the hyperbolicity statement of [5]: Theorem 1. Let F be a field of characteristic not 2, A a ...
متن کاملcommuting and non -commuting graphs of finit groups
فرض کنیمg یک گروه غیر آبلی متناهی باشد . گراف جابجایی g که با نماد نمایش داده می شود ،گرافی است ساده با مجموعه رئوس که در آن دو راس با یک یال به هم وصل می شوند اگر و تنها اگر . مکمل گراف جابجایی g راگراف نا جابجایی g می نامیم.و با نماد نشان می دهیم. گرافهای جابجایی و ناجابجایی یک گروه متناهی ،اولین بار توسطاردوش1 مطرح گردید ،ولی در سالهای اخیر به طور مفصل در مورد بحث و بررسی قرار گرفتند . در ،م...
15 صفحه اولcompactifications and representations of transformation semigroups
this thesis deals essentially (but not from all aspects) with the extension of the notion of semigroup compactification and the construction of a general theory of semitopological nonaffine (affine) transformation semigroup compactifications. it determines those compactification which are universal with respect to some algebric or topological properties. as an application of the theory, it is i...
15 صفحه اولEquivariant Bundles and Isotropy Representations
We introduce a new construction, the isotropy groupoid, to organize the orbit data for split Γ-spaces. We show that equivariant principal G-bundles over split Γ-CW complexes X can be effectively classified by means of representations of their isotropy groupoids. For instance, if the quotient complex A = Γ\X is a graph, with all edge stabilizers toral subgroups of Γ, we obtain a purely combinato...
متن کاملDegenerations of Representations and Thin Triangles
This paper gives a compactification of the space of representations of a finitely generated group into the groups of isometries of all spaces with ∆-thin triangles. The ideal points are actions on R-trees. It is a geometric reformulation and extension of the Culler-Morgan-Shalen theory concerning limits of (characters of) representations into SL2C and more generally SO(n, 1).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transformation Groups
سال: 2013
ISSN: 1083-4362,1531-586X
DOI: 10.1007/s00031-013-9224-y